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Abstract—Distributed systems are an essential part of Industry 
4.0 and IoT. In order to perform properly they depend on 
unambiguous time information while their stripped-down 
hardware prevents the use of extensive protocols and algorithms. 
We developed a light-weight protocol for time transmission aiming 
for simplicity, security and broad applicability by relying solely on 
common web standards. In this paper the new websocket time 
protocol (WST) will be presented.  
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I.  INTRODUCTION 
The digital transformation is, among others, driven by the 

emergence of distributed systems which may for example 
consist of a large number of sensors performing measuring tasks. 
In order to correlate their data, it is important that all sensors, or 
more general all sub devices of the distributed system, use the 
same time scale.  

Among the already existing time protocols, NTP (Network 
Time Protocol) is probably the most important one. It is well 
established and powerful; its binary packages carry a lot of 
information and it forms the basis for highly accurate system 
time by providing a hierarchical system for synchronizing 
system time and disciplining the system clock to UTC. NTP 
provides two security procedures to protect of integrity and 
authenticity: the pre-shared key scheme specified in RFC 5905 
and the Autokey protocol [2]; however, neither of them fulfills 
state-of-the-art security requirements. The disadvantage of the 
shared key scheme is that it that it did not scale well enough for 
large network deployments or the global Internet. While 
Autokey does provide the required scalability by using public 
key infrastructure (PKI) mechanisms, its applied cryptographic 
primitives are too weak to withstand modern attacks [2,3]. 
Because of these shortcomings there is an ongoing effort in the 
IETF to standardize the Network Time Security (NTS) protocol 
for the protection of NTP [5,6]. 

Tlsdate was developed as a secure alternative to NTP and 
uses the timestamp provided by TLS servers during TLS 
handshake. The unexpectedly use of the TLS protocol might 
lead to inaccurate time information and will stop working if the 
timestamp is removed from the TLS protocol in future versions.  

Highest accuracy can be reached by using PTP (Precision 
time Protocol) if the IT infrastructure fully complies to PTP 
requirements [4]. The current standard only provides an 
experimental annex for the integrity protection of PTP messages 
which was never well adopted and implemented. Thus, the 
current effort to revise the PTP specification includes a plan to 
provide a new security mechanism for PTP. 

Our aim was to develop a light-weight and secure time 
protocol that is universally usable. Therefore, it is solely based 
on technologies that are available on virtually every IoT device 
communicating via internet. 

II. WEBSOCKET 
Websocket was developed to allow efficient bidirectional 

communication with low overhead over TCP connections and is 
designed to be compatible with the HTTP protocol. It is 
standardized by the IETF. By using TLS the integrity of the 
transmitted data is ensured. Because websocket uses the port 80 
or 443 it is not affected by firewalls blocking UDP packages. 
Moreover, websocket allows to communicate through proxy 
servers, using encryption if necessary. 

III. WEBSOCKET TIME PROTOCOL (WST) 
To provide a timestamp via the websocket time protocol 

(WST) two packages are sufficient: request and response. A 
third package – acknowledge – is induced by the TCP protocol. 
All data exchanged via WST is in JSON format and UTF-8 
encoding. All numbers are represented as strings in the decimal 
system. 

A. Request 
As shown in Table I, the request package send by the client 

consists of only one optional parameter, the client time 
information which is opaque to the server. This information may 
be used by the client to estimate package run times after 
receiving the response package without remembering the send 
timestamp or the request order on several requests. The server 
simply copies the client time information into the response 
package. Thus, its format may be client-specific and e.g. relative 
time designations are also possible. Furthermore, additional 
arbitrary information may be added as long as the request 
package does not grow above its maximum size of 1024 byte.  



TABLE I.  REQUEST FORMAT AND PARAMETER 

 { c: <client time information; optional> } 

c 
optional 
 

Client time information. Returned by server as is. 
Necessary to calculate packet run time on client side. 
Additional information may be enclosed. 

 

B. Response 

TABLE II.  RESPONSE FORMAT AND PARAMETER 

 

{ 
c: <client time information; optional>, 
s: <server timestamp; required>, 
e: <error estimation; optional>, 
l: <leap information; optional>  
} 

c optional Client time information. Returned by server as is. 

s required 
Server timestamp [milliseconds since 01.01.1970 
00:00:00 UTC; number as string representation in 
decimal system]. 

e optional Error estimation of server timestamp [milliseconds; 
number as string representation in decimal system]. 

l optional Leap information; syntax in line with RFC 5905. 
Values 0 (or empty), 1, 2, or 3 [Text in JSON]. 

 
There are four parameters in the response package send by 

the server, see Table II. The optional client time information is 
repeated without validation as described above. 

The required main parameter, the server timestamp, is given 
as the number of milliseconds bygone since the Unix epoch 
01.01.1970 00:00:00 in Coordinated Universal Time (UTC) 
neglecting time zones. It is accompanied by the optional 
parameter error estimation which is also given in milliseconds. 
The error estimation is an auxiliary means for the client to 
estimate the quality of the timestamp. 

The leap information is given as a simple number between 0 
and 3. The meaning of the numbers is equivalent to NTP: If there 
is no leap second pending, the leap information is set to 0. A 
leap information of 1 indicates that the last minute of the day has 
61 seconds and it is set to 2 if the last minute has only 59 
seconds. If the server is no able to inform about leap seconds the 
leap information is set to 3 or omitted. 

IV. USE CASES 

A. Time Server 
A WST time server receives the request and sends a response 

including the time stamp. In our implementation a Linux server 
is used whose system time is managed by ntpd (NTP daemon), 
with stratum 2.  

The time is determined using the operating system’s 
interface gettimeofday which provides the number of 
microseconds past since the Unix epoch 1.1.1970 0:00. This 
value is converted into milliseconds. Thus, the dissemination of 
time is done with a resolution that is 1000 times lower than the 
resolution of time determination. 

In order to estimate the error of the generated timestamp a 
parameter offered by NTP is used. The so called rootdelay 

denotes the total round trip time from our server to the reference 
clock (stratum 0). Assuming symmetric run times, the error 
estimation is set to one half of the rootdelay. 

The execution of the program described above takes less 
than 1 ms. Websocket allows for performant server 
implementations that impose low requirements on server 
hardware. 

B. Simple time request 
The simplest time request conceivable goes without a client 

timestamp. The client sends a time request with an empty value 
of c. The server responses to the request and transmits its 
timestamp TSTS to the client. Upon receiving the response, all 
information is ignored except the timestamp TSTS, which is 
applied without applying any correction to the propagation delay 
of the request and response messages. This may be sufficient for 
IoT devices without demand for highly accurate time scales 
which maybe even lack a real time clock (RTC). This is 
especially true if package run times are comparatively short. One 
idea could be to operate a WST time server in the same local 
network which is pretty straightforward as described above. 

C. Run time correction 
There are numerous factors if timestamps are transmitted 

over networks. A fundamental treatment is offered by RFC 5905 
but would go beyond the purpose of WST. Because usually the 
package run times are the most important influence factor WST 
allows to roughly estimate these. 

In this case the request message contains the timestamp TCS 
of its submission (see Fig. 1). The server returns the timestamp 
TSTS together with the timestamp TCS. This enables the client to 
calculate network delay ∆t after receiving the response package 
at time TCE. 

 ∆t = TCS - TCE (1) 

The individual propagation delay of the request and response 
message may thus be estimated by ∆t/2. The offset between the 
client and the server clock Q results in  

 Q =  - TSTS + (TCS + TCE)/2. (2) 

Strictly speaking, this assumption is only correct if the 
propagation delays are symmetric and if computation time of 
client and server may be neglected. In the worst case of 
maximum asymmetry, the maximum error of the offset Q sums 
up to ∆t/2. To keep this error low it may be reasonable to conduct 
three or more time inquiries and evaluate only the one with the 
smallest package run times. 

 

 
Fig. 1. Progress of time exchange 
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D. Use in HTML-Websites 
All modern browsers support the websocket protocol. An 

example to use can be found at our web site https://uhr.ptb.de. 

V. CONCLUSION 
We presented a simple to use protocol for exchanging time 

information and some use cases. The protocol is light-weight 
and easy to employ. It is based solely on technologies that are 
available on virtually all IoT devices connected to the internet. 
Furthermore, it allows to protect the time information by using 
TLS. 

VI. OUTLOOK 
There is ongoing work on implementing the use cases 

described in section IV which will serve as first examples of 
using the new WST protocol. We also plan on registering the 
websocket sub-protocol identifier “time” with IANA. Further 
standardization is conceivable. 
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