
A light-weight time protocol
based on common web standards

M. Gutbrod, T. Klein, D. Sibold
Physikalisch-Technische Bundesanstalt

38116 Braunschweig, Germany
martin.gutbrod@ptb.de

Abstract—Distributed systems are an essential part of Industry
4.0 and IoT. In order to perform properly they depend on
unambiguous time information while their stripped-down
hardware prevents the use of extensive protocols and algorithms.
We developed a light-weight protocol for time transmission aiming
for simplicity, security and broad applicability by relying solely on
common web standards. In this paper the new websocket time
protocol (WST) will be presented.

Keywords—time protocol, websocket, ntp, time transmission,
WST

I. INTRODUCTION
The digital transformation is, among others, driven by the

emergence of distributed systems which may for example
consist of a large number of sensors performing measuring tasks.
In order to correlate their data, it is important that all sensors, or
more general all sub devices of the distributed system, use the
same time scale.

Among the already existing time protocols, NTP (Network
Time Protocol) is probably the most important one. It is well
established and powerful; its binary packages carry a lot of
information and it forms the basis for highly accurate system
time by providing a hierarchical system for synchronizing
system time and disciplining the system clock to UTC. NTP
provides two security procedures to protect of integrity and
authenticity: the pre-shared key scheme specified in RFC 5905
and the Autokey protocol [2]; however, neither of them fulfills
state-of-the-art security requirements. The disadvantage of the
shared key scheme is that it that it did not scale well enough for
large network deployments or the global Internet. While
Autokey does provide the required scalability by using public
key infrastructure (PKI) mechanisms, its applied cryptographic
primitives are too weak to withstand modern attacks [2,3].
Because of these shortcomings there is an ongoing effort in the
IETF to standardize the Network Time Security (NTS) protocol
for the protection of NTP [5,6].

Tlsdate was developed as a secure alternative to NTP and
uses the timestamp provided by TLS servers during TLS
handshake. The unexpectedly use of the TLS protocol might
lead to inaccurate time information and will stop working if the
timestamp is removed from the TLS protocol in future versions.

Highest accuracy can be reached by using PTP (Precision
time Protocol) if the IT infrastructure fully complies to PTP
requirements [4]. The current standard only provides an
experimental annex for the integrity protection of PTP messages
which was never well adopted and implemented. Thus, the
current effort to revise the PTP specification includes a plan to
provide a new security mechanism for PTP.

Our aim was to develop a light-weight and secure time
protocol that is universally usable. Therefore, it is solely based
on technologies that are available on virtually every IoT device
communicating via internet.

II. WEBSOCKET
Websocket was developed to allow efficient bidirectional

communication with low overhead over TCP connections and is
designed to be compatible with the HTTP protocol. It is
standardized by the IETF. By using TLS the integrity of the
transmitted data is ensured. Because websocket uses the port 80
or 443 it is not affected by firewalls blocking UDP packages.
Moreover, websocket allows to communicate through proxy
servers, using encryption if necessary.

III. WEBSOCKET TIME PROTOCOL (WST)
To provide a timestamp via the websocket time protocol

(WST) two packages are sufficient: request and response. A
third package – acknowledge – is induced by the TCP protocol.
All data exchanged via WST is in JSON format and UTF-8
encoding. All numbers are represented as strings in the decimal
system.

A. Request
As shown in Table I, the request package send by the client

consists of only one optional parameter, the client time
information which is opaque to the server. This information may
be used by the client to estimate package run times after
receiving the response package without remembering the send
timestamp or the request order on several requests. The server
simply copies the client time information into the response
package. Thus, its format may be client-specific and e.g. relative
time designations are also possible. Furthermore, additional
arbitrary information may be added as long as the request
package does not grow above its maximum size of 1024 byte.

TABLE I. REQUEST FORMAT AND PARAMETER

 { c: <client time information; optional> }

c
optional

Client time information. Returned by server as is.
Necessary to calculate packet run time on client side.
Additional information may be enclosed.

B. Response

TABLE II. RESPONSE FORMAT AND PARAMETER

{
c: <client time information; optional>,
s: <server timestamp; required>,
e: <error estimation; optional>,
l: <leap information; optional>
}

c optional Client time information. Returned by server as is.

s required
Server timestamp [milliseconds since 01.01.1970
00:00:00 UTC; number as string representation in
decimal system].

e optional Error estimation of server timestamp [milliseconds;
number as string representation in decimal system].

l optional Leap information; syntax in line with RFC 5905.
Values 0 (or empty), 1, 2, or 3 [Text in JSON].

There are four parameters in the response package send by

the server, see Table II. The optional client time information is
repeated without validation as described above.

The required main parameter, the server timestamp, is given
as the number of milliseconds bygone since the Unix epoch
01.01.1970 00:00:00 in Coordinated Universal Time (UTC)
neglecting time zones. It is accompanied by the optional
parameter error estimation which is also given in milliseconds.
The error estimation is an auxiliary means for the client to
estimate the quality of the timestamp.

The leap information is given as a simple number between 0
and 3. The meaning of the numbers is equivalent to NTP: If there
is no leap second pending, the leap information is set to 0. A
leap information of 1 indicates that the last minute of the day has
61 seconds and it is set to 2 if the last minute has only 59
seconds. If the server is no able to inform about leap seconds the
leap information is set to 3 or omitted.

IV. USE CASES

A. Time Server
A WST time server receives the request and sends a response

including the time stamp. In our implementation a Linux server
is used whose system time is managed by ntpd (NTP daemon),
with stratum 2.

The time is determined using the operating system’s
interface gettimeofday which provides the number of
microseconds past since the Unix epoch 1.1.1970 0:00. This
value is converted into milliseconds. Thus, the dissemination of
time is done with a resolution that is 1000 times lower than the
resolution of time determination.

In order to estimate the error of the generated timestamp a
parameter offered by NTP is used. The so called rootdelay

denotes the total round trip time from our server to the reference
clock (stratum 0). Assuming symmetric run times, the error
estimation is set to one half of the rootdelay.

The execution of the program described above takes less
than 1 ms. Websocket allows for performant server
implementations that impose low requirements on server
hardware.

B. Simple time request
The simplest time request conceivable goes without a client

timestamp. The client sends a time request with an empty value
of c. The server responses to the request and transmits its
timestamp TSTS to the client. Upon receiving the response, all
information is ignored except the timestamp TSTS, which is
applied without applying any correction to the propagation delay
of the request and response messages. This may be sufficient for
IoT devices without demand for highly accurate time scales
which maybe even lack a real time clock (RTC). This is
especially true if package run times are comparatively short. One
idea could be to operate a WST time server in the same local
network which is pretty straightforward as described above.

C. Run time correction
There are numerous factors if timestamps are transmitted

over networks. A fundamental treatment is offered by RFC 5905
but would go beyond the purpose of WST. Because usually the
package run times are the most important influence factor WST
allows to roughly estimate these.

In this case the request message contains the timestamp TCS
of its submission (see Fig. 1). The server returns the timestamp
TSTS together with the timestamp TCS. This enables the client to
calculate network delay ∆t after receiving the response package
at time TCE.

 ∆t = TCS - TCE (1)

The individual propagation delay of the request and response
message may thus be estimated by ∆t/2. The offset between the
client and the server clock Q results in

 Q = - TSTS + (TCS + TCE)/2. (2)

Strictly speaking, this assumption is only correct if the
propagation delays are symmetric and if computation time of
client and server may be neglected. In the worst case of
maximum asymmetry, the maximum error of the offset Q sums
up to ∆t/2. To keep this error low it may be reasonable to conduct
three or more time inquiries and evaluate only the one with the
smallest package run times.

Fig. 1. Progress of time exchange

Server

Client
TCS TCE

TSS TSE

∆t

TSTS

D. Use in HTML-Websites
All modern browsers support the websocket protocol. An

example to use can be found at our web site https://uhr.ptb.de.

V. CONCLUSION
We presented a simple to use protocol for exchanging time

information and some use cases. The protocol is light-weight
and easy to employ. It is based solely on technologies that are
available on virtually all IoT devices connected to the internet.
Furthermore, it allows to protect the time information by using
TLS.

VI. OUTLOOK
There is ongoing work on implementing the use cases

described in section IV which will serve as first examples of
using the new WST protocol. We also plan on registering the
websocket sub-protocol identifier “time” with IANA. Further
standardization is conceivable.

REFERENCES
[1] I. Fette, A. Melnikov, “The WebSocket Protocol,” Internet Engineering

Task Force (IETF), RFC 6455, 2011. [Online]. Available:
http://tools.ietf.org/html/rfc6455

[2] S. Röttger, "Analysis of the NTP Autokey Procedures," Technische
Universität Braunschweig, Institute of Theoretical Information
Technology, Braunschweig, 2012.

[3] D. L. Mills, “NTP security analysis”, May 2012 [Online] Available:
https://www.eecis.udel.edu/~mills/security.html. [Accessed: 24-Jul-
2017]

[4] IEEE. (2008). Precision clock synchronization protocol for networked
measurement and control systems. In IEEE Std 1588-2008 (Revision of
IEEE Std 1588-2002) (Vol. 1588, pp. 271). New York: The Institute of
Electrical and Electronics Engineers, Inc.

[5] Donoghue, K. O., Sibold, D., & Fries, S. (2017, Aug. 28 2017-Sept. 1
2017). New security mechanisms for network time synchronization
protocols. Paper presented at the 2017 IEEE International Symposium on
Precision Clock Synchronization for Measurement, Control, and
Communication (ISPCS).

[6] Franke, D. F., Sibold, D., & Teichel, K. (2017). Network time security for
the network time protocol (draft-ietf-ntp-using-nts-for-ntp-10). Retrieved
from https://datatracker.ietf.org/doc/html/draft-ietf-ntp-using-nts-for-ntp-
10

